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FELIX GOTTI

Integral Extensions II (Spectral Theorems)

In this lecture, we discuss three important results about lifting prime ideals in integral
extensions. We assume that all rings we deal with here are commutative rings with
identities.

Theorem 1 (Lying Over Theorem). Let R ⊆ S be an integral ring extension. Then
every prime ideal of R has the form Q ∩R for some prime ideal Q of S.

Proof. Let P be a prime ideal of R. Set M = R \ P . Since M is a submonoid of the
multiplicative monoid of S, there exists an ideal Q of S that is maximal in the set of all
ideals of S disjoint from M . In addition, we have seen that such an ideal Q is prime.
Since Q is disjoint from M , the inclusion Q ∩ R ⊆ P holds. Now assume, by way of
contradiction, that there is an r ∈ P such that r /∈ Q. Since Q is properly contained
in the ideal Q + (r) of S, the maximality of Q ensures the existence of m ∈ M such
that m ∈ Q + (r). Write m = q + sr for some q ∈ Q and s ∈ S. Because s is integral
over R, there is an n ∈ N such that sn+

∑n−1
i=0 cis

i = 0 for some c0, . . . , cn−1 ∈ R. After
multiplying this equality by rn, we see that

(sr)n +
n−1∑
i=0

cir
n−i(sr)i = 0.

Substituting sr = m− q in the previous equality and applying the Binomial Theorem,
we obtain that t := mn+

∑n−1
i=0 cir

n−imi ∈ Q. As a result, t ∈ R∩Q ⊆ P . Since both t
and r belong to P , then it follows that mn ∈ P . Therefore m ∈ P , contradicting that
P is disjoint from M . Hence P ⊆ Q ∩R, which completes the proof. □

With notation as in Theorem 1, we say that the ideal Q lies over P .

Theorem 2 (Going Up Theorem). Let R ⊆ S be an integral ring extension, and let P1

and P2 be two prime ideals of R such that P1 ⊆ P2. If Q1 is a prime ideal of S lying
over P1, then there exists a prime ideal Q2 of S lying over P2 such that Q1 ⊆ Q2.
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Proof. Since P2 is a prime ideal of R, the set M = R \ P2 is a submonoid of the
multiplicative monoid of S. As P1 = Q1∩R, the idealQ1 is disjoint fromM . As a result,
there exists a prime ideal Q2 of S that is maximal among all ideal of S containing Q1

and disjoint from M . We can now show that Q2 lies over P2 by mimicking the proof
of Theorem 1. □

In an integral extension, not two prime ideals lying over the same prime ideal are
comparable. Let us prove this assertion.

Theorem 3 (Incomparability Theorem). Let R ⊆ S be an integral ring extension, and
let Q1 and Q2 be two prime ideals of S such that Q1 ⊆ Q2. If Q1 ∩ R = Q2 ∩ R, then
Q1 = Q2.

Proof. Set P = Q1 ∩ R, which is a prime ideal of R. Let M be the submonoid R \ P
of the multiplicative monoid of R. Now consider the collection S of all ideals I
of S disjoint from M . We will argue that Q1 is a maximal ideal in S . Suppose, by
way of contradiction, that this is not the case, and take an ideal I in S such that
Q1 ⊊ I. Take s ∈ I \Q1. Since the extension R ⊆ S is integral, there is a polynomial
f(x) = xn +

∑n−1
i=0 cix

i ∈ R[x] of minimum degree such that f(s) ∈ Q1. Because

c0 = −
(
sn +

∑n−1
i=1 cis

i
)
∈ I, it follows that c0 ∈ I ∩R ⊆ P = Q1 ∩R ⊆ Q1. Therefore

we see that s
(
sn−1 +

∑n−1
i=1 cis

i−1
)
∈ Q1. However, s /∈ Q1 and the minimality of f(x)

guarantees that sn−1 +
∑n−1

i=1 cis
i−1 /∈ Q1, contradicting the fact that Q1 is a prime

ideal. Hence Q1 is a maximal ideal in S . As a result, if Q2 is an ideal of S satisfying
that Q1 ⊆ Q2 and Q1 ∩R = Q2 ∩R, then the equality Q1 = Q2 must hold. □

A chain of prime ideals P0 ⊊ P1 ⊊ · · · ⊊ Pn of a ring R is said to have length n.
In addition, the (Krull) dimension of R is the supremum of the lengths of all its
chains of prime ideals. Clearly, every field has dimension 0, and a PID that is not a
field has dimension 1. In addition, a polynomial ring K[x1, . . . , xn] over a field K has
dimension n (see [2, page 285]).

Corollary 4. If R ⊆ S is an integral extension, then R and S have the same dimension.

Proof. It follows as an immediate consequence of the Lying Over, Going Up, and
Incomparability Theorems. □

Integral extensions respect maximal ideals.

Proposition 5. Let R ⊆ S be an integral ring extension, and let Q be a prime ideal
of S lying over a prime ideal P of R. The ideal Q is maximal if and only if the ideal P
is maximal.

Proof. Suppose first that Q is maximal, and take a maximal ideal P1 of R with P ⊆ P1.
By the Going-Up Theorem, there is a prime ideal Q1 of S containing Q and lying
over P1. Since Q is maximal, Q1 = Q and so P1 = Q1 ∩ R = Q ∩ R = P . Thus, P is
maximal.
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Conversely, suppose that P is maximal. Let Q1 be a maximal ideal of S containing Q.
Clearly, Q1 lies over a prime ideal of R containing P , and so the maximality of P ensures
that Q1 ∩R = P . Since both Q and Q1 lie over P , it follows from the Incomparability
Theorem that Q1 = Q. Hence Q is maximal. □

We conclude this lecture with a statement of a dual version of the Going Up Theorem.

Theorem 6 (Going Down Theorem). Let R be an integrally closed domain, and let S
be an integral extension of R. If P1 and P2 are prime ideals of R such that P1 ⊆ P2

and Q2 is a prime ideal of S lying over P2, then there exists a prime ideal Q1 of S
which is contained in Q2 and lies over P1.

Proof. See [1, Section 15.3]. □

Exercises

Exercise 1. Let R ⊆ S be an integral extension, and let Q be a maximal ideal of S
lying over (the maximal ideal) P . Argue with a counterexample that SQ may not be
integral over RP .

Exercise 2. Let F be a field with a subring R, and let P be a prime ideal of R. Prove
that for any nonzero a ∈ F , either R[a] or R[1/a] contains a prime ideal lying over P .

Exercise 3. Let R be an integral domain with quotient field K. Let L be an algebraic
extension of K, let T be the integral closure of R in L, and set T0 := T ∩ K. Prove
that the following statements hold.

(1) T0 is the integral closure of R.

(2) L is the quotient field of T .

(3) If a ∈ T and m(x) ∈ K[x] is the minimal polynomial of a, then m(x) ∈ T0[x].

Exercise 4. Let K be an algebraically closed field, and let I be the principal ideal
(X3 − X2 + Y 2) of K[X, Y ]. Let R1 := K[X, Y ]/I = K[x, y], where x and y are the
residue classes of X and Y modulo I, respectively. Set R2 := K[x, y/x]. Prove the
following statements.

(1) The extension R1 ⊆ R2 is integral.

(2) The ideal P := R1x+R1y of R1 is maximal.

(3) The ideal P 2 is P -primary in R1 and P 2R2 ∩R1 = P 2.

(4) No primary ideal of R2 lies over P 2 in R1.
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